

Features

- Compliant with 40G Ethernet IEEE802.3ba and
- 40GBASE-ER4 Standard
- QSFP+ MSA compliant
- Compliant with QDR/DDR Infiniband data rates
- Up to 11.2Gb/s data rate per wavelength
- 4 CWDM lanes MUX/DEMUX design
- Up to 40km transmission on single mode fiber
 (SMF)
- 18.5dB link insertion loss budget
- Operating case temperature: 0 to 70oC
- Maximum power consumption 3.5W
- LC duplex connector
- RoHS compliant
- Digital Optical Monitoring (DOM) Enabled

Applications

40GBASE-ER4 Ethernet Links Infini band QDR and DDR interconnects Client-side 40G Telecom connections

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Storage Temperature	Ts	-40	85	°C
Operating Case Temperature	T _{OP}	0	70	C°
Power Supply Voltage	Vcc	-0.5	3.6	V
Relative Humidity (non-condensation)	RH	0	85	%
Damage Threshold, each Lane	TH₀	3.8		dBm

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Operating Case Temperature	TOP	0		+70	°C
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Data Rate, each Lane			10.3125	11.2	Gb/s
Control Input Voltage High		2		Vcc	V
Control Input Voltage Low		0		0.8	V
Link Distance with G.652	D			40	km

Electrical Characteristics

Parameter	Symbol	Min	Typical	Мах	Unit	Notes
Power Consumption				3.5	W	
Supply Current	lcc			1.1	А	
Transceiver Power-on Initialization Time					ms	1

Notes:

1. Power-on Initialization Time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.

Optical Characteristics

Parameter	Symbol	Min	Typical	Мах	Unit	Notes
	L0	1264.5	1271	1277.5	nm	
	L1	1284.5	1291	1297.5	nm	
	L2	1304.5	1311	1317.5	nm	
	L3	1324.5	1331	1337.5	nm	

Digital Diagnostic Functions

Parameter	Symbol	Min	Max	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-3	+3	°C	Over ope rating mperature range
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Over full oper ating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_IBias_Ch	-10%	10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1
Notos:				-	

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional +/-1 dB fluctuation, or a +/- 3 dB total accuracy.

Transmitter Electro-optical Characteristics (each Lane)

 $V_{cc} = 3.135 V$ to 3.465 V, $T_c = 0^{\dagger} C$ to $70^{\dagger} C$

Parameter	Symbol	Min	Typical	Max	Unit	Notes
						Referred to
Single-ended Input Voltage Tolerance (Note 1)	-0.3		4.0	V	TP1 signal
						common
AC Common Mode Input Voltage Tolerance		15			mV	RMS
Differential Input Voltage Swing Threshold		50			mVpp	LOSA
						Threshold
Differential Input Voltage Swing	Vin,pp	190		700	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	
Differential Input Return Loss		See IEE	E 802.3ba 8	6A.4.11	dB	10MHz-
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	
Data Dependent Pulse Width Shrinkage		0.07				
(DDPWS) Tolerance		0.07			UI	
Eye Mask Coordinates {X1, X2			0.11, 0.31		UI	Hit Ratio =
Y1, Y2}			95, 350		mV	5x10⁻⁵
Side Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	PT			10.5	dBm	
Average Launch Power, each Lane	PAVG	-2.7		4.5	dBm	
Optical Modulation Amplitude	POMA	0.3		5.0	dBm	2
(OMA), each Lane Difference in Launch Power between any 7	Two Ptx,diff			4.7	dB	
Lanes (OMA)						
Launch Power in OMA minus Transmitter a Dispersion Penalty (TDP), each Lane	and	-0.5			dBm	
TDP, each Lane	TDP			2.6	dB	
Extinction Ratio	ER	5.5			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	12dB reflection
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	RT			-12	dB	

Transmitter Eye Mask Definition

 $\{0.25, 0.4, 0.45, 0.25, 0.28, 0.4\}$

{X1, X2, X3, Y1, Y2, Y3}

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
Notes:						

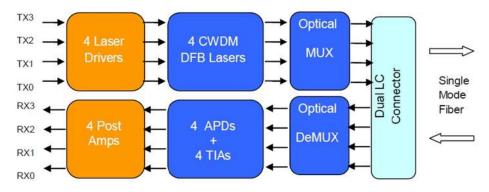
- 1. The single ended input voltage tolerance is the allowable range of the instantaneous input signals.
- 2. Even if the TDP < 0.8 dB, the OMA min must exceed the minimum value specified here.

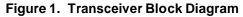
Receiver Electro-optical Characteristics (each Lane)

Vcc = 3.135 V to 3.465 V, $Tc = 0^{+}C$ to $70^{+}C$

Parameter	Symbol	Min	Typical	Max	Unit	Notes
						Referred to
Single-ended Output Voltage		-0.3		4.0	V	signal
						common
AC Common Mode Output Voltage				7.5	mV	RMS
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	
Termination Mismatch at 1MHz				5	%	
Differential Output Return Loss		See IEE	E 802.3ba	86A.4.2.1	dB	10MHz- 11.1GHz
Common Mode Output Return Loss		See IEE	E 802.3ba	86A.4.2.2	dB	10MHz- 11.1GHz
Output Transition Time		28			ps	20% to 80%
J2 Jitter Output	Jo2			0.42	UI	
J9 Jitter Output	Jo9			0.65	UI	
Eye Mask Coordinates {X1, X2			0.29, 0.5		UI	Hit Ratio =
Y1, Y2}			150, 425		mV	5x10 ⁻⁵
Damage Threshold, each Lane	THd	3.8			dBm	2
Average Receive Power, each Lane		-21.2		-4.5	dBm	
Receiver Reflectance	RR			-26	dB	
Receive Power (OMA), each Lane				-4	dBm	
Receiver Sensitivity (OMA), each Lane	SEN			-19	dBm	
Stressed Receiver Sensitivity				-16.8	dBm	2
(OMA), each Lane		-		- 10.0		
Difference in Receive Power	Prx,diff		•	7	dB	
between any Two Lanes (OMA)	T TX,dill			1	uВ	
LOS Assert	LOSA	-35			dBm	
LOS Deassert	LOSD			-20	dBm	
LOS Hysteresis	LOSH	0.5			dB	
Receiver Electrical 3 dB upper Cutoff Frequency, each Lane	Fc			12.3	GHz	

Parameter	Symbol	Min	Typical	Max	Unit	Notes
Conditions of S	Stress Receiv	ver Sensitiv	vity Test (No	ote 3)		
Vertical Eye Closure Penalty, each Lane			2.2		dB	
Stressed Eye J2 Jitter, each Lane			0.3		UI	
Stressed Eye J9 Jitter, each Lane		0.47		UI		
Notes:						


1. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.


2. Measured with conformance test signal at receiver input for BER = 1×10^{-12} .

3. Vertical eye closure penalty and stressed eye jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Block Diagram of Transceiver

This product converts the 4-channel 10Gb/s electrical input data into CWDM optical signals (light), by a driven 4wavelength Distributed Feedback Laser (DFB) array. The light is combined by the MUX parts as a 40Gb/s data, propagating out of the transmitter module from the SMF. The receiver module accepts the 40Gb/s CWDM optical signals input, and de-multiplexes it into 4 individual 10Gb/s channels with different wavelength. Each wavelength light is collected by a discrete avalanche photodiode (APD), and then outputted as electric data after amplified first by a TIA and then by a post amplifier. Figure 1 shows the functional block diagram of this product.

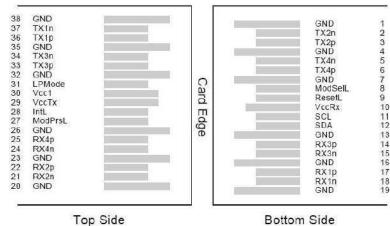
A single +3.3V power supply is required to power up this product. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2-wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.

Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus – individual ModSelL lines must be used.

Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP+ memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Low Power Mode (LPMode) pin is used to set the maximum power consumption for the product in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted.


Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground though a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

e-mail: info@alphabridge.tech, Website: www.alphabridge.tech

Pin Assignment

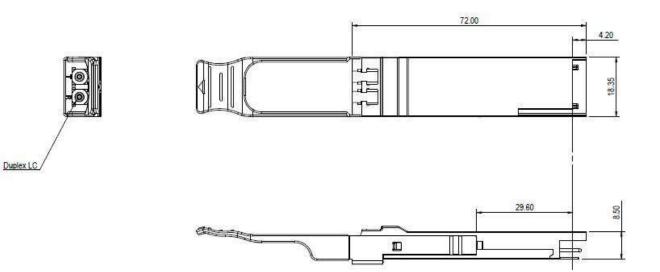
Viewed from Top Viewed from Bottom Figure 2. MSA compliant Connector

PIN	Logic	Symbol	Name/Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSeIL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GNC	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data output	
15	CML-O	Rx3n	Receiver Inverted Data output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data output	
22	CML-O	Rx2p	Receiver Non-Inverted Data output	
23		GND	Ground	1

Page 8 of 12

e-mail: info@alphabridge.tech, Website: www.alphabridge.tech

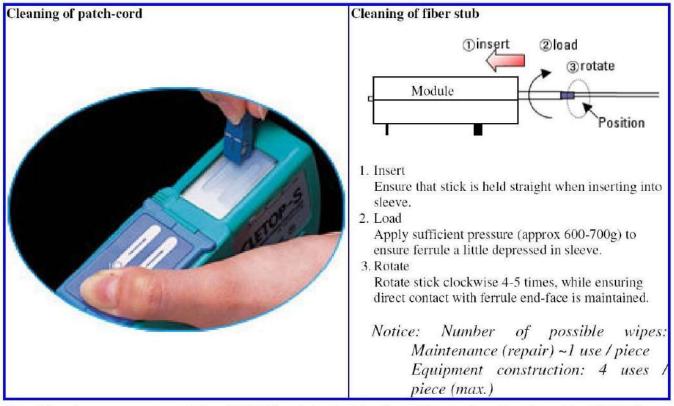
40Gbps QSFP ER4 Optical Transceiver Module AQSFP-40G-ER4 datasheet


24	CML-O	Rx4n	Receiver Inverted Data output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply transmitter	2
30		Vcc1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1
Notes:				

- 1. GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

40Gbps QSFP ER4 Optical Transceiver Module AQSFP-40G-ER4 datasheet

Dimensions



40Gbps QSFP ER4 Optical Transceiver Module AQSFP-40G-ER4 datasheet

Optical Receptacle Cleaning Recommendations:

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop® stick type and HFE7100 cleaning fluid. Before the mating of patch-cord, the fiber end should be cleaned up by using Cletop® cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Model Number	Part Number	Voltage	Temperature
AQSFP-40G-ER4	OPCS-S40-13-CB	3.3V	0^{t} C to 70 t C

Note: All information contained in this document is subject to change without notice.

Page 12 of 12