

+

AQSFP-40G-LR4 Datasheet

Alpha Bridge AQSFP-40G-LR4 Datasheet

Page 1 of 9

+

Features

- Compliant with 40G Ethernet IEEE802.3ba and 40GBASE-LR4 Standard
- QSFP+ MSA compliant
- Compliant with QDR/DDR Infiniband data rates
- Up to 11.2Gb/s data rate per wavelength
- 4 CWDM lanes MUX/DEMUX design
- Up to 10km transmission on single mode fiber (SMF)
- Operating case temperature: 0 to 70°C
- Maximum power consumption 3.5W
- LC duplex connector
- RoHS compliant

Applications

- 40GBASE-LX4 Ethernet Links
- Infiniband QDR and DDR interconnects
- Client-side 40G datacom connections

Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Unit				
Storage Temperature	Ts	-40	85	°C				
Operating Case Temperature	T _{OP}	0	70	°C				
Power Supply Voltage	Vcc	-0.5	3.6	V				
Relative Humidity (non-condensation)	RH	0	85	%				
Damage Threshold, each Lane	THd	4.5		dBm				

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Мах	Unit
Operating Case Temperature	TOP	0		+70	°C
Power Supply Voltage	Vcc	3.135	3.3	3.465	V
Data Rate, each Lane			10.3125	11.2	Gb/s
Control Input Voltage High		2		Vcc	V
Control Input Voltage Low		0		0.8	V
Link Distance with (OM3 MMF)	D_mmf			150	m
Link Distance (SMF)	D_smf			2	km

Electrical Characteristics

Parameter	Symbol	Min	Typical	Мах	Unit	Notes
Power Consumption				3.5	W	
Supply Current	lcc			1.1	А	
Transceiver Power-on Initialization Time				2000	ms	1

+ Notes:

1. Power-on initialization time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.

optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
	LO	1264.5	1271	1277.5	nm	
Wavelength assignment	L1	1284.5	1291	1297.5	nm	
	L2	1304.5	1311	1317.5	nm	
	L3	1324.5	1331	1337.5	nm	

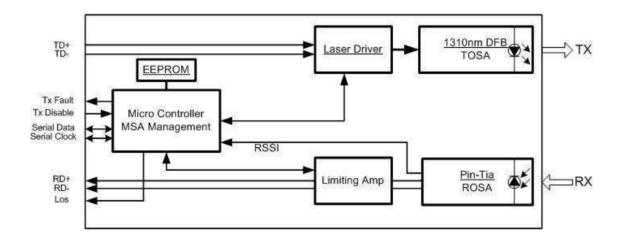
Digital Diagnostic Functions

Parameter	Symbol	Min	Typical	Max	Unit
Temperature monitor absolute error	DMI_Temp	-3	3	°C	Over operating
	•				temperature range
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_lbias_Ch	-10%	10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Transmitter Electro-optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
						Referred to
Single-ended Output Voltage		-0.3		4.0	V	signal
						common
AC Common Mode Output Voltage				7.5	mV	RMS
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	
Termination Mismatch at 1MHz				5	%	
Differential Output Return Loss	See II	EEE 802.3	ba 86A.4.2.1		dB	10MHz- 11.1GHz
Common Mode Output Return Loss	See I	EEE 802.3	ba 86A.4.2.2	2	dB	10MHz- 11.1GHz
Output Transition Time		28			ps	20% to 80%
J2 Jitter Output	Jo2			0.42	UI	
J9 Jitter Output	Jo9			0.65	UI	
Eye Mask Coordinates		0.29,	UI	Hit Ratio =		

<u>+</u>	T				
{x1, x2			150, 425	mV	5x10⁻⁵
Damage Threshold, each Lane	THd	4.5		dBm	1
Total Average Receive Power (for SMF)			8.3	dBm	
Total Average Receive Power (for MMF)			9.5	dBm	
Average Receive Power, each Lane (for SMF)		-11.7	2.3	dBm	
Average Receive Power, each Lane (for MMF)		-7.0	3.5	dBm	
Receiver Reflectance	RR		-26	dB	
Receive Power (OMA), each Lane (for SMF)			3.5	dBm	
Receiver Power (OMA), each Lane (for MMF)			4.5	dBm	
Receiver Sensitivity (OMA), each Lane (for SMF)					
Receiver Sensitivity (OMA), each Lane (for MMF)					
Difference in Receive Power	Prx,diff	7.5		dB	
between any Two Lanes (OMA)					
LOS Assert	LOSA	-28		dBm	
LOS Deassert	LOSD		-15	dBm	
LOS Hysteresis	LOSH	0.5		dB	


Receiver Electro-optical Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Notes
						Referred to
Single-ended Output Voltage		-0.3		4.0	V	signal
						common
AC Common Mode Output Voltage				7.5	mV	RMS
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	
Termination Mismatch at 1MHz				5	%	
Differential Output Return Loss	See	EEE 802	dB	10MHz- 11.1GHz		
Common Mode Output Return Loss	See	EEE 802	dB	10MHz- 11.1GHz		
Output Transition Time		28			ps	20% to 80%
J2 Jitter Output	Jo2			0.42	UI	
J9 Jitter Output	Jo9			0.65	UI	
Eye Mask Coordinates		0.29,	0.5		UI	Hit Ratio =
{X1, X2				150, 425	mV	5x10⁻⁵
Y1, Y2}						
Damage Threshold, each Lane	THd	4.5			dBm	1
Total Average Receive Power (for SMF)				8.3	dBm	

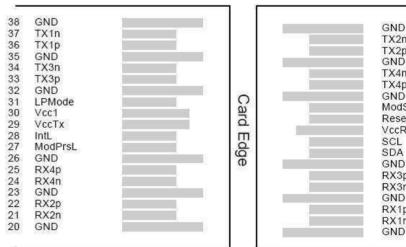
<u>+</u>		-			<u>r</u>
Total Average Receive Power (for MMF)			9.5	dBm	
Average Receive Power, each Lane (for SMF)		-11.7	2.3	dBm	
Average Receive Power, each Lane (for MMF)		-7.0	3.5	dBm	
Receiver Reflectance	R _R		-26	dB	
Receive Power (OMA), each Lane (for SMF)			3.5	dBm	
Receiver Power (OMA), each Lane (for MMF)			4.5	dBm	
Receiver Sensitivity (OMA), each Lane (for SMF)					
Receiver Sensitivity (OMA), each Lane (for MMF)					
Difference in Receive Power	Prx,diff		7.5	dB	
between any Two Lanes (OMA)					
LOS Assert	LOSA	-28		dBm	
LOS Deassert	LOSD		-15	dBm	
LOS Hysteresis	LOSH	0.5		dB	

Block Diagram of Transceiver

This product converts the 4-channel 10Gb/s electrical input data into CWDM optical signals (light), by a driven 4- wavelength Distributed Feedback Laser (DFB) array. The light is combined by the MUX parts as a 40Gb/s data, propagating out of the transmitter module from the MMF. The receiver module accepts the 40Gb/s CWDM optical signals input, and de-multiplexes it into 4 individual 10Gb/s channels with different wavelength. Each wavelength light is collected by a discrete photo diode, and then outputted as electric data after amplified by a TIA and a post amplifier.

Figures 1 and 2 show the functional block diagram of this product.

A single +3.3V power supply is required to power up this product. Both power supply pins VccTx and VccRx are internally connected and should be applied concurrently. As per MSA specifications the module offers 7 low speed hardware control pins (including the 2wire serial interface): ModSelL, SCL, SDA, ResetL, LPMode, ModPrsL and IntL.


Module Select (ModSelL) is an input pin. When held low by the host, this product responds to 2-wire serial communication commands. The ModSelL allows the use of this product on a single 2-wire interface bus - individual ModSelL lines must be used. Serial Clock (SCL) and Serial Data (SDA) are required for the 2-wire serial bus communication interface and enable the host to access the QSFP+ memory map.

The ResetL pin enables a complete reset, returning the settings to their default state, when a low level on the ResetL pin is held for longer than the minimum pulse length. During the execution of a reset the host shall disregard all status bits until it indicates a completion of the reset interrupt. The product indicates this by posting an IntL (Interrupt) signal with the Data_Not_Ready bit negated in the memory map. Note that on power up (including hot insertion) the module should post this completion of reset interrupt without requiring a reset.

Low Power Mode (LPMode) pin is used to set the maximum power consumption for the product in order to protect hosts that are not capable of cooling higher power modules, should such modules be accidentally inserted.

Module Present (ModPrsL) is a signal local to the host board which, in the absence of a product, is normally pulled up to the host Vcc. When the product is inserted into the connector, it completes the path to ground through a resistor on the host board and asserts the signal. ModPrsL then indicates its present by setting ModPrsL to a "Low" state.

Interrupt (IntL) is an output pin. "Low" indicates a possible operational fault or a status critical to the host system. The host identifies the source of the interrupt using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled to the Host Vcc voltage on the Host board.

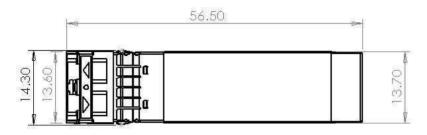
Pin Assignment

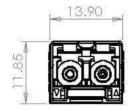
Top Side Viewed from Top

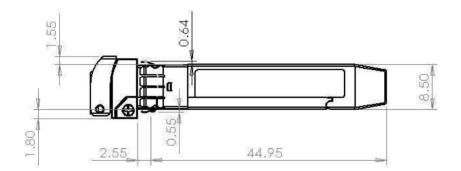
1 2 3 4 5 6 7 8 9 10 TX2n ТХ2р GND TX4n TX4p GND ModSelL ResetL VccRx 11 SCL SDA 12 GND 13 RX3p 14 RX3n 15 GND 16 RX1p 17 RX1n 18 GND 19

Bottom Side Viewed from Bottom

Page 6 of 9

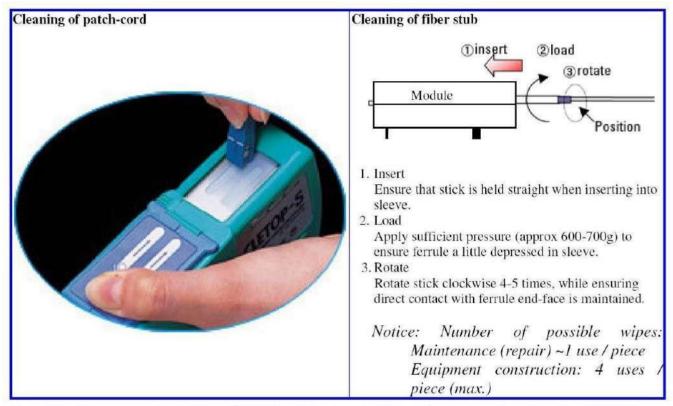

[Logic	Symbol	Name/Description	Notes
		GND	Ground	1
	CML-I	Tx2n	Transmitter Inverted Data Input	
	CML-I	Tx2p	Transmitter Non-Inverted Data output	
		GND	Ground	1
	CML-I	Tx4n	Transmitter inverted Data Input	
	CML-I	Tx4p	Transmitter Non-Inverted Data output	
		GND	Ground	1
	LVTLL-I	ModSeIL	Module Select	
	LVTLL-I	ResetL	Module Reset	
		VccRx	+3.3V Power Supply Receiver	2
Ι	LVCMOS -I/O	SCL	2-Wire Serial Interface Clock	
Ι	LVCMOS -I/O	SDA	2-Wire Serial Interface Data	
		GNC	Ground	
	CML-O	Rx3p	Receiver Non-Inverted Data output	
	CML-O	Rx3n	Receiver Inverted Data output	
		GND	Ground	1
	CML-O	Rx1p	Receiver Non-Inverted Data Output	
	CML-O	Rx1n	Receiver Inverted Data Output	
		GND	Ground	1
		GND	Ground	1
	CML-O	Rx2n	Receiver Inverted Data output	
2	CML-O	Rx2p	Receiver Non-Inverted Data output	
3		GND	Ground	
1	CML-O	Rx4n	Receiver Inverted Data output	
5	CML-O	Rx4p	Receiver Non-Inverted Data output	
5		GND	Ground	
7	LVTTL- O	ModPrsL	Module Present	
3	LVTTL- O	IntL	Interrupt	
)		VccTx	+3.3V Power Supply transmitter	
)		Vcc1	+3.3V Power Supply	
1	LVTTL-I	LPMode	Low Power Mode	
2		GND	Ground	
3	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
4	CML-I	Tx3n	Transmitter Inverted Data Output	
5		GND	Ground	
5	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
7	CML-I	Tx1n	Transmitter Inverted Data Output	




+ Notes:

- 1. GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- VccRx, Vcc1 and VccTx are the receiving and transmission power suppliers and shall be applied concurrently. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Dimensions



Optical Receptacle Cleaning Recommendations:

All fiber stubs inside the receptacle portions were cleaned before shipment. In the event of contamination of the optical ports, the recommended cleaning process is the use of forced nitrogen. If contamination is thought to have remained, the optical ports can be cleaned using a NTT international Cletop® stick type and HFE7100 cleaning fluid. Before the mating of patch-cord, the fiber end should be cleaned up by using Cletop® cleaning cassette.

Note: The pictures were extracted from NTT-ME website. And the Cletop® is a trademark registered by NTT-ME

Ordering Information

Model Number	Part Number	Voltage	Temperature
AQSFP-40G-LR4	OPCS-X02-13-CB	3.3V	0° C to 70 $^{\circ}$ C

Note: All information contained in this document is subject to change without notice.

Copyright @ Alpha Bridge Technologies Private Limited This document is ABTPL Public Information. ABTPL reserves the right to alter, update, and otherwise change the information contained in the document from time to time. www.alphabridge.tech

Page 10 of 10